

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 62 (2006) 6214-6221

Comparative studies for selective deprotection of the N-arylideneamino moiety from heterocyclic amides: kinetic and theoretical studies. Part 2^{3}

Nouria A. Al-Awadi,^{*} Yehia A. Ibrahim, Hicham H. Dib, Maher R. Ibrahim, Boby J. George and Mariam R. Abdallah

Chemistry Department, Kuwait University, PO Box 5969, Safat 13060, Kuwait

Received 22 February 2006; revised 30 March 2006; accepted 20 April 2006 Available online 15 May 2006

Abstract—4-Benzylideneamino-1,2,4-triazine-3,5(2*H*,4*H*)-diones (2–5), 6-styryl-1,2,4-triazine-3,5(2*H*,4*H*)-dione (6), and 6-styryl-2,3-dihydro-3-thioxo-1,2,4-triazin-5(4*H*)-one (7) were synthesized and pyrolyzed in the gas phase. The kinetic effect of changing the substituent on the triazine ring from hydrogen to methyl, phenyl, and styryl was measured. Analyses of the pyrolyzates of 2-5 showed the elimination products to be benzonitrile and the triazine fragment, while the pyrolyzates of 6 and 7 reveal the formation of *cis*- and *trans*-cinnamonitriles. Theoretical study of the pyrolysis reactions of 2-5 using an ab initio SCF method was investigated. © 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Pyrolytic deprotection of 4-arylideneamino-3(2H)-thioxo-1,2,4-triazin-5(4H)-one (1) was carried out.² Based on the product analysis together with kinetic results and in the absence of theoretical studies two mechanistic pathways

Scheme 1.

* See Ref. 1.

Keywords: Arylideneamino; Pyrolysis; Kinetics; Reaction mechanism.

* Corresponding author. Tel.: +965 4985537; fax: +965 4816482; e-mail: nouria@kuc01.kuniv.edu.kw

0040–4020/\$ - see front matter 0 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2006.04.054

were suggested (Scheme 1). Theoretical studies showed that it is the carbonyl and not the thione bond that attacks the hydrogen atom of the arylideneamino groups.

In this study we have extended the investigation to include 4benzylideneamino-1,2,4-triazine-3,5-dione derivatives **2–5**, 6-styryl-1,2,4-triazine-3,5(2H,4H)-dione (**6**), and 6-styryl-2,3-dihydro-3-thioxo-1,2,4-triazin-5(4H)-one (**7**).

2. Results and discussion

2.1. Product analysis

The substrates 2–7 were prepared and fully characterized by NMR and MS, as described in the Section 3. The products of static as well as flash vacuum pyrolysis of each substrate were analyzed; the constituents of pyrolyzate from 2–5 were ascertained to be benzonitrile³ together with the heterocyclic fragments 10a, 10b, 10c, and 6 while FVP of 6 and 7 results in *cis*- and *trans*-cinnamonitrile (Table 1).

2.2. Kinetic studies

For each substrate, first-order rate coefficients were obtained at regular temperature intervals. Each rate constant is an average of at least three independent measurements in agreement to within $\pm 2\%$. The reactions for which the kinetic data were obtained have been ascertained to be homogeneous, unimolecular, non-catalytic, and non-radical processes.^{4,5} Arrhenius plots of the data using first-order

Table 1	. Pyrolysis	products and	% yield c	of compounds	1-6 under	static/FVP pyrolysis
---------	-------------	--------------	-----------	--------------	-----------	----------------------

Compound	Substrate	% Yield (static/FVP)					
		9	10a-c, 5, 13	11	12		
1		$Ph-C \equiv N$ (42/43) ³	NH NH NH O H 10a (35/36) ¹²	_	_		
2	H ₃ C N NH O N O N Ph	$Ph-C \equiv N$ $(32/48)^3$	$H_{3}C$ N NH O N O H 10b (53/39) ¹²	_	_		
3	Ph N N O N O Ph	$Ph-C \equiv N$ $(47/28)^3$	$\begin{array}{c} Ph & N & NH \\ O & N & O \\ H & O \\ H \\ 10c (45/46)^{12} \end{array}$	_	_		
4	PhCH=CH N NH O N O N O Ph	$Ph-C \equiv N$ $(34/38)^{3}$	PhCH=CH N NH 0 N O H 5 (54/24) ¹⁰	H = CN Ph = H 11 (19/13) ¹⁷	$H \to H$ Ph CN 12 (17/10) ¹⁷		
5	PhN_NH ON_O H	_	_	H CN Ph H H 11 (18/9) ¹⁷	H H H $CN12 (14/12)17$		
6	Ph N N N N N N N N N N N N N N N N N N N	_	HS — CN 13 ¹⁸	H CN Ph H 11 (38/23) ¹⁷	H H Ph CN 12 (25/15) ¹⁷		

rate equation: $\log k (s^{-1}) = \log A - E_a \text{ kJ mol}^{-1} (2.303\text{ R}T)^{-1}$ were strictly linear over $\geq 95\%$ reaction with correlation coefficient in the range 0.99 ± 0.005 . The log A, E_a values and the first-order rate constants of the six compounds under investigation are given in Table 2.

The main features of the kinetic results are as follows:

- Two alternative pathways could be postulated for the extrusion of PhC≡N from 2–5. Pathway (A) involves nucleophilic attack of the C⁵=O group on the hydrogen of the arylidene moiety (Scheme 2) while pathway (B) involves the nucleophilic attack of the C³=O on the same hydrogen atom (Scheme 3). To make the choice between (A) and (B), we have examined both pathways theoretically for compounds 2–5.
- Examination of the free energy of the two suggested pyrolytic pathways of compounds **2–5** shows that:
 - 1. For hydrogen, methyl, phenyl, and styryl substituted compounds (2–5), the final product P-II can be formed from either pathway A or B (Fig. 1).

- 2. With the exception of compound **5**, there is no considerable difference between the TS-I in the two suggested pathways.
- 3. For each compound, formation of P-I from TS-I requires relatively lower energy via pathway B than that in pathway A. This means that the reaction preferentially involves C³=O rather than C⁵=O in the transition state.
- The overall reactivities of compounds **2–5** are the result of electronic synergism involving bonds a, b, and c, and the stabilizing influences associated with the substituents (R) (Scheme 4).
- The reactivity of compound **3** exceeds that of compound **2** by a factor of 1.39×10^4 (Scheme 4), this rate enhancement is attributed to the influence that the methyl substituent has on the delocalization of the lone pair of electrons on N² onto the carbonyl oxygen atom of C³=O group involved in the reaction pathway. This causes an increase in the protophilicity of the bond a, this effect of which the delocalization of this lone pair of electrons on N² is exerting is further revealed when

Table 2. Rate coefficients (k/s	⁻¹), Arrhenius parameter	s of compounds 1-6
---------------------------------	--------------------------------------	--------------------

Compound	T/K	$10^4 k/s^{-1}$	$\log A/s^{-1}$	$E_{\rm a}/{\rm k~J~mol^{-1}}$	$k_{500\rm K}/{\rm s}^{-1}$
1	548.35 588.45 598.35 608.65 618.45	1.455 10.66 19.78 28.71 45.88	9.39±0.29	140.58±3.24	7.55×10^{-6}
2	399.45 409.55 419.05 428.85 444.25	0.790 1.942 4.582 11.23 26.41	11.35±0.68	119.36±5.44	1.05×10^{-1}
3	445.45 465.35 475.25 485.55 495.65	0.322 1.728 3.671 8.146 17.23	12.54±0.07	147.00±0.70	2.31×10^{-3}
4	456.75 471.25 514.55 519.35	1.332 2.643 18.07 20.77	6.13±0.10	88.572±1.02	9.69×10^{-4}
5	620.95 649.75 663.65 677.85 705.95 719.95	1.390 3.967 6.426 9.750 23.63 35.90	6.36±0.07	123.08±0.89	4.66×10 ⁻⁷
6	639.85 661.55 683.05 704.75 726.45 748.10 770.15	1.125 1.947 3.573 8.391 17.46 29.84 46.17	6.02±0.33	124.25±4.41	1.56×10^{-7}

Scheme 2. Pathway A of the suggested mechanism.

the rate of compound 4 is compared with that of compound 3.

- Changing (R) from methyl in compound **3** to phenyl in compound **4** resulted in reducing the molecular reactivity of compound **4** by a factor of 45.5, this is attributed to the competitive (opposing) delocalization of the lone pair of electrons on N^2 atom of the triazine ring by the phenyl group (Scheme 5).
- This effect explains also:
 - (i) The relative reactivity factor of 304.5 of compound **4** over compound **2**.
 - (ii) The comparable reactivities of compounds **4** and **5**.
- A reaction mechanism postulated in Scheme 6 is suggested for the formation of *cis* and *trans*-cinnamonitrile from compounds 6 and 7 together with traces of HSCN from compound 7 (Table 1).

Scheme 3. Pathway B of the suggested mechanism.

Figure 1. Free energy profile evaluated at the HF/6-31G* level for compounds 2-5.

This reaction mechanism accounts well for the absence of any electronic effect of changing X from oxygen in 6 to sulfur in 7.

2.3. Computational studies

Ab initio molecular orbital studies on the thermolysis of four-substituted 1,2,4-triazine compounds **2–5**, were carried out in the gas phase using SCF method. Calculations were carried out to explore the nature of the reaction mechanism of the unimolecular decomposition of the studied reaction. Two competitive reaction pathways have been studied. Calculations have been performed using TITAN and SPARTAN packages.^{6,7}

The geometric parameters of the reactants, the transition states (TS), and the products of the four studied reactions were fully optimized at the HF/6-31G* level to obtain the

Scheme 6. Product analyses of compounds 6 and 7.

Scheme 5. Opposing delocalization of the lone pair of electrons on N^2 atom by methyl (3) and phenyl (4) groups.

energy profiles corresponding to the studied reactions. A scaling factor⁸ of 0.9135 for the zero-point vibrational energies has been used. The main distances of the optimized structure of the two pathways of the two studied reactions

is represented in Table 3. Electronic energies, zero-point vibrational energies, enthalpies, and entropies, evaluated at the HF/6-31G* level of theory, for all the reactants, transition states, and product involved in the two pathways of the studied reaction are collected in Table 4. The free energy

Table 3. Main distances (Å) of the reactants, TS-I, TS-II, TS-III, TS-IV, P-I, and P-II of the two pathways of the four-substituted compounds, calculated at the HF/6-31G* level

Parth Reactant 1.188 1.191 2.614 1.079 1.258 2.448 1.401 4.080 TS-I 1.185 1.193 2.080 1.071 1.260 2.617 1.382 4.586 P-I 1.190 1.322 0.948 — — 3.041 Path 1.188 1.239 1.317 — — 3.031 Path 1.189 1.249 1.071 1.260 2.639 1.382 2.078 PAI 1.316 1.091 0.953 — — 2.281 — 0.9953 PAI 1.189 1.191 2.481 — — 1.000 — 2.481 RC-CH ₂ E E <t< th=""><th>Species</th><th>C₃–O₈</th><th>C5-O7</th><th>O7-H11</th><th>C₁₀-H₁₁</th><th>C₁₀-N₉</th><th>N₄-H₁₁</th><th>N₄-N₉</th><th>O₈-H₁₁</th></t<>	Species	C ₃ –O ₈	C5-O7	O7-H11	C ₁₀ -H ₁₁	C ₁₀ -N ₉	N ₄ -H ₁₁	N ₄ -N ₉	O ₈ -H ₁₁
Path AReactant1.1881.1912.6141.0791.2582.4481.4014.080TS-I1.1851.1932.0801.0711.2602.6171.3824.586PAI1.1841.2491.3173.028-5.271TS-II1.1881.2491.3171.323-3.041Path B1.8282.5011.4011.9451.9591.2582.5011.4011.945TS-I1.1951.1842.0781.0711.2602.6291.3822.078PAI1.3161.1910.9532.81-0.953PAI1.2531.1801.3081.331-1.308PAII1.1891.1912.4811.000-2.481 <i>Rectant</i> 1.1861.1931.8151.0581.2572.5541.3964.594TS-111.1861.1952.0791.0711.2602.6271.3822.62PAI1.1911.3230.9473.026-5.262PAI1.1911.2320.9473.026-5.262PAI1.1911.2320.9473.0262.2402.481PAI1.1911.2300.9471.2243.043 <td>R=H</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	R=H								
Reactant 1.188 1.191 2.614 1.079 1.258 2.448 1.401 4.080 P.I 1.185 1.193 2.080 1.071 1.260 2.617 1.382 4.586 P.I 1.190 1.322 0.948 — — — 3.028 — 5.271 TS-II 1.188 1.249 1.317 — — — 1.323 — 3.041 Path B Reactant 1.187 1.190 1.945 1.059 1.258 2.501 1.401 1.945 TS-I 1.95 1.184 2.078 1.071 1.260 2.629 1.382 2.078 P.I 1.316 1.191 0.953 — — — 2.281 — 0.9953 TS-II 1.253 1.189 1.308 — — — 1.301 — 1.308 P.II 1.253 1.189 1.308 — — — 1.000 — 2.481 Reactant 1.186 1.193 2.481 — — — 1.000 — 2.481 Reactant 1.186 1.193 1.815 1.058 1.257 2.554 1.396 4.594 TS-II 1.189 1.251 0.947 — — 1.302 — 3.026 — 5.262 TS-II 1.189 1.251 1.316 — — — 1.302 — 3.043 P.II 1.189 1.251 1.316 — — — 1.302 — 3.043 TS-II 1.189 1.251 1.316 — — — 1.326 — 3.043 P.II 1.199 1.251 1.316 — — — 1.326 — 3.043 P.II 1.199 1.251 1.316 — — — 1.326 — 3.043 P.II 1.199 1.251 1.316 — — — 1.326 — 3.043 P.II 1.199 1.251 1.316 — — — 1.326 — 3.043 P.II 1.199 1.251 1.316 — — — 1.326 — 3.043 P.II 1.199 1.251 1.316 — — — 1.322 — 3.043 P.II 1.196 1.190 4.605 1.064 1.257 2.525 1.396 1.951 TS-II 1.196 1.190 4.605 1.064 1.257 2.526 1.396 1.951 TS-II 1.196 1.190 4.605 1.064 1.257 2.526 1.396 1.951 P.I 1.196 1.190 4.605 1.064 1.257 2.526 1.396 1.951 P.I 1.196 1.190 3.411 — — 1.329 — 0.953 TS-II 1.254 1.190 3.411 — — 1.329 — 1.308 P.II 1.254 1.190 3.411 — — 1.329 — 2.481 <i>Reactant</i> 1.181 1.180 1.744 1.038 1.258 2.542 1.403 4.601 TS-II 1.189 1.253 1.307 — — 1.321 — 3.300 P.II 1.192 1.316 0.954 — — 2.246 1.403 1.999 TS-II 1.192 1.253 1.307 — — 2.248 1.401 3.199 P.II 1.190 1.316 0.954 — — 2.248 1.401 P.II 1.191 1.316 0.954 — — 2.248 1.403 P.II 1.191 1.316 0.954 — — 2.2481 — 0.953 P.II 1.192 1.192 2.465 1.071 1.260 2.631 1.383 2.068 P.II 1.99 1.184 4.505 1.071 1.260 2.631 1.383 2.068 P.II 1.191 1.316 0.954 — — 2.2481 — 0.953 P.II 1.192 1.192 2.4777 1.079 1.257 2.433 1.401 3.944 P.II 1.317 1.192 4.479 — — 2.244 1.403 4.601 TS-II 1.189 1.254 1.309 — — 1.331 — 1.338 P.II 1.194 1.317 1.92 4.479 — — 2.2461 1.381 4.595 P.II 1.318 1.186 1.946 1.074 1.	Path A								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Reactant	1.188	1.191	2.614	1.079	1.258	2.448	1.401	4.080
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TS-I	1.185	1.193	2.080	1.071	1.260	2.617	1.382	4.586
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P-I	1.190	1.322	0.948	—	—	3.028	—	5.271
Path BReactant1.1871.1901.9451.0781.0711.2602.6291.3822.078P.I1.3161.1910.9532.2810.953P.I1.2331.1891.3081.3311.308P.II1.2831.1891.3081.3312.841P.II1.1801.1912.4811.3012.481P.II1.1801.1952.0791.0711.2602.6271.3824.589P.I1.1861.1952.0791.0711.2602.6271.3824.589P.I1.1861.1952.0791.0711.2602.6271.3824.589P.I1.1801.2511.3161.3243.403Path BReactant1.9661.6441.2572.5251.3822.072P.I1.1961.1854.5811.0711.2592.6281.3822.072P.I1.1961.1854.5811.0711.2592.6471.3814.594P.I1.1961.1854.5811.0701.2592.6471.3814.594P.I1.1921.9103.4111.329-1.308P.II1.541.1903.4161.329-2.565T.S-II1.1861.1932.0861.070	TS-II	1.188	1.249	1.317	—	—	1.323	—	3.041
Reactant 1.187 1.190 1.945 1.059 1.258 2.501 1.401 1.945 PJ 1.316 1.191 0.953 2.281 0.953 P-II 1.233 1.189 1.308 1.331 0.953 P-II 1.233 1.189 1.2481 1.331 1.308 P-II 1.186 1.193 1.815 1.058 1.257 2.554 1.396 4.594 Path A 1.186 1.193 0.815 0.058 1.257 2.554 1.396 4.589 P-1 1.191 1.323 0.947 3.026 5.262 P-1 1.189 1.251 1.316 - 1.324 3.003 Path B - - 1.324 0.525 1.360 2.672 1.403 4.601 TS-1 1.192	Path B								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Reactant	1.187	1.190	1.945	1.059	1.258	2.501	1.401	1.945
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TS-I	1.195	1.184	2.078	1.071	1.260	2.629	1.382	2.078
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P-I	1.316	1.191	0.953	_		2.281		0.953
P-II1.1891.1912.4811.0002.481 $R=CH_I$ Path ANNNNNNReactant1.1861.1931.8151.0581.2572.5541.3964.594P-I1.1861.1932.0791.0711.2602.6721.3824.589P-I1.1911.3230.9473.0265.262TS-II1.1891.2511.3163.0265.262TS-II1.1961.1904.6051.0641.2572.5251.3961.951Path A1.1961.1934.4922.2790.953P-II1.3171.1934.4922.2790.953P-II1.1921.1912.4860.9992.481 <i>R=phryl</i> 7411.1801.7441.0381.2582.5421.4034.601P-II1.1911.3160.9542.2405.256TS-II1.1891.2631.0071.2582.4901.4031.909P-I1.1911.3160.9542.2402.240P-I1.1922.0551.0711.2602.6111.3831.906P-I1.1981.1874.5041.0641.2582.4901.4031.909<	TS-II	1.253	1.189	1.308	_		1.331		1.308
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P-II	1.189	1.191	2.481		_	1.000	_	2.481
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
Laur A Reactant1.1931.8151.0581.2572.5541.3964.594TS-I1.1861.1952.0791.0711.2602.6271.3824.589P-I1.1911.3230.947 $ -$ 3.026 $-$ 5.262TS-II1.1891.2511.316 $ -$ 1.324 $-$ 3.403Path BR $ -$ 1.324 $-$ 3.403Reactant1.1961.1854.5811.0711.2592.6281.3822.072TS-I1.1961.1854.5811.0711.2592.6281.3822.072P-I1.3171.1934.492 $ -$ 2.279 $-$ 0.953TS-II1.2541.1903.411 $ -$ 0.399 $-$ 2.481 <i>R=PhenylR=PhenylRRRRRR</i> Path AReactant1.1861.932.0861.0701.2592.6471.3814.594P-11.1911.3160.954 $ -$ 2.240 $-$ 5.256TS-II1.1891.1874.5041.0641.2582.4901.4031.699TS-I1.1961.1844.5651.0711.2602.6311.3832.068P-11.3171.1924.479 $ -$ 2.240 $-$ 0.933TS-I1.1961.1844.565 </td <td>$R = C \Pi_3$ Doth A</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	$R = C \Pi_3$ Doth A								
Reactain 1.180 1.195 1.815 1.036 1.257 2.334 1.390 4.394 Pal 1.191 1.323 0.947 - - 3.026 - 5.262 Pal 1.199 1.251 1.316 - - 1.324 - 3.403 Path B - - 1.324 - 3.403 Reactant 1.196 1.190 4.605 1.064 1.257 2.525 1.396 1.951 TS-I 1.196 1.185 4.581 1.071 1.259 2.628 1.382 2.072 P-I 1.317 1.193 4.492 - - 1.329 - 0.953 TS-II 1.182 1.191 2.486 - - 0.999 - 2.481 Reactant 1.181 1.180 1.744 1.038 1.258 2.542 1.403 4.601 TS-I 1.180 1.261 0.954 - - 2.240 - 5.256 TS-II 1.191 1.316 0.95	Faul A Decetort	1 106	1 102	1 0 1 5	1.059	1 257	2 554	1 206	4 504
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TOI	1.100	1.195	1.615	1.038	1.237	2.334	1.390	4.394
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15-1	1.180	1.195	2.079	1.071	1.200	2.027	1.382	4.589
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P-I TO H	1.191	1.323	0.947	_	_	5.020	—	5.202
Path B Reactant 1.196 1.185 4.581 1.071 1.259 2.628 1.382 2.072 P-I 1.317 1.193 4.492 - - 2.279 - 0.953 TS-II 1.324 1.190 3.411 - - 1.329 - 1.308 P-II 1.192 1.191 2.486 - - 0.999 - 2.481 <i>R=Phenyl</i> - - 0.999 - 2.481 - - 0.999 - 2.481 Reactant 1.181 1.180 1.744 1.038 1.258 2.542 1.403 4.601 TS-1 1.186 1.193 2.086 1.070 1.259 2.647 1.381 4.594 P-I 1.191 1.316 0.954 - - 2.321 - 3.390 Path B R 4.505 1.071 1.260 2.631 1.383 2.068 P-1 1.317 1.192 4.479 - - 2.284 - 0.953	15-11	1.189	1.251	1.310	—	_	1.324	_	5.405
Reactant 1.196 1.180 4.605 1.064 1.257 2.525 1.396 1.951 TS-I 1.196 1.185 4.581 1.071 1.259 2.628 1.382 2.072 P-I 1.317 1.193 4.492 — — — 0.999 — 0.953 TS-II 1.254 1.190 3.411 — — 0.999 — 2.481 <i>Reactant</i> 1.192 1.191 2.486 — — 0.999 — 2.481 <i>Reactant</i> 1.181 1.180 1.744 1.038 1.258 2.542 1.403 4.601 TS-I 1.186 1.193 2.086 1.070 1.258 2.647 1.381 4.594 P-I 1.181 1.316 0.954 — — 1.321 — 3.390 Path B 1.253 1.307 — — 1.321 — 5.256 TS-I 1.180 1.187 4.504 1.064 1.258 2.490 1.403 1.909	Path B		1 100		1.044	1		1.004	1.051
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Reactant	1.196	1.190	4.605	1.064	1.257	2.525	1.396	1.951
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TS-1	1.196	1.185	4.581	1.0/1	1.259	2.628	1.382	2.072
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P-1	1.317	1.193	4.492	_	_	2.279	—	0.953
P.II1.1921.1912.486 $ 0.999$ $ 2.481$ $R=Phenyl$ Path AReactant1.1811.1801.7441.0381.2582.5421.4034.601TS-I1.1861.1932.0861.0701.2592.6471.3814.594P.I1.1911.3160.954 $ -$ 2.240 $-$ 5.256TS-II1.1891.2531.307 $ -$ 2.240 $-$ 5.256Path B $ 2.240$ $ 3.390$ Path B $ 2.284$ $ 0.953$ TS-I1.1961.1844.5051.0711.2602.6311.3832.068P.I1.3171.1924.479 $ 1.331$ $ 1.308$ P.II1.3171.1924.479 $ 1.000$ $ 2.481$ $R=phCH=CH$ $ 1.000$ $ 2.481$ Reactant1.1891.192 2.717 1.079 1.257 2.433 1.401 3.944 TS-II1.1861.1942.0971.071 1.259 2.654 1.381 4.595 P-II1.1811.320 0.949 $ 3.013$ $ 4.492$ TS-II1.1891.2541.309 $ 3.013$ $ 4.492$ <	TS-II	1.254	1.190	3.411	—	—	1.329	—	1.308
R=PhenylPath AReactant1.1811.1801.7441.0381.2582.5421.4034.601TS-I1.1861.1932.0861.0701.2592.6471.3814.594P-I1.1911.3160.9542.240-5.256TS-II1.1891.2531.3071.321-3.300Path BReactant1.1981.1874.5041.0641.2582.4901.4031.909TS-I1.1961.1844.5551.0711.2602.6311.3832.068P-I1.3171.1924.4792.284-0.953TS-II1.2541.1893.3861.331-1.308P-II1.1921.1902.4551.000-2.481Reactant1.1891.1922.7171.0791.2572.4331.4013.944TS-I1.1861.1942.0971.0711.2592.6541.3814.595P-I1.1911.3200.9491.323-4.492TS-II1.1861.1942.0971.0711.2592.6541.3814.595P-I1.1911.3200.9491.323-4.348Path B1.2602.6271.3842.595P-I1.1911.309	P-11	1.192	1.191	2.486	_	_	0.999	_	2.481
Path AReactant1.1811.1801.7441.0381.2582.5421.4034.601TS-I1.1861.1932.0861.0701.2592.6471.3814.594P-I1.1911.3160.9542.240-5.256TS-I1.1891.2531.3071.321-3.390Path B </td <td>R=Phenyl</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	R=Phenyl								
Reactant1.1811.1801.7441.0381.2582.5421.4034.601TS-I1.1861.1932.0861.0701.2592.6471.3814.594P-I1.1911.3160.9542.240-5.256TS-II1.1891.2531.3071.321-3.390Path B1.6551.0711.2602.6311.3832.068P-I1.3171.1924.4792.284-0.953TS-II1.2541.1893.3861.000-2.481P-II1.1921.1902.4551.000-2.481P-II1.1921.1902.4551.000-2.481R=phCH=CHPath AR=catant1.1891.922.7171.0791.2572.4331.4013.944TS-I1.1861.1942.0971.0711.2592.6541.3814.595P-I1.1911.3200.9493.013-4.348Path BReactant1.1941.1874.0941.0781.2582.4601.4012.575TS-II1.1961.1854.5691.0701.2602.6271.3842.058Path BReactant1.1941.1874.0941.0781.2582.4601.4012.575<	Path A								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Reactant	1.181	1.180	1.744	1.038	1.258	2.542	1.403	4.601
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TS-I	1.186	1.193	2.086	1.070	1.259	2.647	1.381	4.594
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P-I	1.191	1.316	0.954	_	_	2.240	_	5.256
Path BReactant1.1981.1874.5041.0641.2582.4901.4031.909TS-I1.1961.1844.5651.0711.2602.6311.3832.068P-I1.3171.1924.4792.284-0.953TS-II1.2541.1893.3861.331-1.308P-II1.1921.1902.4551.000-2.481R=PhCH=CHPath AReactant1.1861.1942.0971.0711.2592.6541.3814.595P-I1.1911.3200.9493.013-4.492TS-II1.1891.2541.3091.323-4.348Path BReactant1.1941.1874.0941.0781.2582.4601.4012.575TS-I1.1961.1854.5691.0701.2602.6271.3842.058PI1.3131.1984.4572.276-0.954TS-II1.3131.1984.4571.329-1.309P-I1.3131.913.3781.329-1.309P-II1.1931.1912.4481.000-2.481	TS-II	1.189	1.253	1.307	_	_	1.321	_	3.390
Reactant1.1981.1874.5041.0641.2582.4901.4031.909TS-I1.1961.1844.5651.0711.2602.6311.3832.068P-I1.3171.1924.4792.284-0.953TS-II1.2541.1893.3861.331-1.308P-II1.1921.1902.4551.000-2.481R=PhCH=CHReactant1.1861.1942.0971.0711.2572.4331.4013.944TS-I1.1861.1942.0971.0711.2592.6541.3814.595P-I1.1911.3200.9493.013-4.492TS-II1.1891.2541.3091.323-4.348Path BReactant1.1941.1874.0941.0781.2582.4601.4012.575TS-I1.1961.1854.5691.0701.2602.6271.3842.058P-I1.3131.1984.4572.276-0.954TS-II1.2551.1913.3781.329-1.309P-II1.1931.1912.4481.000-2.481	Path B								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Reactant	1.198	1.187	4.504	1.064	1.258	2.490	1.403	1.909
P-I1.3171.1924.4792.2840.953TS-II1.2541.1893.3861.3311.308P-II1.1921.1902.4551.0002.481R=PhCH=CHPath AReactant1.1861.1922.7171.0791.2572.4331.4013.944TS-I1.1861.1942.0971.0711.2592.6541.3814.595P-I1.1911.3200.9493.0134.492TS-II1.1891.2541.3094.348Path BReactant1.1941.1874.0941.0781.2582.4601.4012.575TS-I1.1961.1854.5691.0701.2602.6271.3842.058P-I1.3131.1984.4571.309P-I1.3131.1984.4571.3291.309P-II1.3131.1913.3781.3291.309P-II1.1931.1912.4481.0002.481	TS-I	1.196	1.184	4.565	1.071	1.260	2.631	1.383	2.068
11.121.1893.386 $ -$ 1.331 $-$ 1.308P-II1.1921.1902.455 $ -$ 1.000 $-$ 2.481R=PhCH=CHPath A71.0791.2572.4331.4013.944TS-I1.1861.1942.0971.0711.2592.6541.3814.595P-I1.1911.3200.949 $ -$ 3.013 $-$ 4.492TS-I1.1891.2541.309 $ -$ 1.323 $-$ 4.348Path BReactant1.1941.1874.0941.0781.2582.4601.4012.575TS-I1.1961.1854.5691.0701.2602.6271.3842.058P-I1.3131.1984.457 $ -$ 2.276 $-$ 0.954TS-II1.2551.1913.378 $ -$ 1.329 $-$ 1.309P-II1.1931.1912.448 $ -$ 1.000 $-$ 2.481	P-I	1.317	1.192	4 479	_	_	2.284	_	0.953
HorizonHorizonHorizonHorizonHorizonHorizonP-II1.1921.1902.455 $ -$ 1.000 $-$ 2.481 $R=PhCH=CH$ Path AReactant1.1861.1922.7171.0791.2572.4331.4013.944TS-I1.1861.1942.0971.0711.2592.6541.3814.595P-I1.1911.3200.949 $ -$ 3.013 $-$ 4.492TS-II1.1891.2541.309 $ -$ 1.323 $-$ 4.348Path BReactant1.1941.1874.0941.0781.2582.4601.4012.575TS-I1.1961.1854.5691.0701.2602.6271.3842.058P-I1.3131.1984.457 $ -$ 2.276 $-$ 0.954TS-II1.2551.1913.378 $ -$ 1.329 $-$ 1.309P-II1.1931.1912.448 $ -$ 1.000 $-$ 2.481	TS-II	1 254	1 189	3 386			1 331		1 308
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P-II	1.192	1.190	2.455	_	_	1.000	_	2.481
R=PhCH=CHPath AReactant1.1891.1922.7171.0791.2572.4331.4013.944TS-I1.1861.1942.0971.0711.2592.6541.3814.595P-I1.1911.3200.949 $ -$ 3.013 $-$ 4.492TS-II1.1891.2541.309 $ -$ 1.323 $-$ 4.348Path BReactant1.1941.1874.0941.0781.2582.4601.4012.575TS-I1.1961.1854.5691.0701.2602.6271.3842.058P-I1.3131.1984.457 $ -$ 2.276 $-$ 0.954TS-II1.2551.1913.378 $ -$ 1.329 $-$ 1.309P-II1.1931.1912.448 $ -$ 1.000 $-$ 2.481									
Path A Reactant 1.189 1.192 2.717 1.079 1.257 2.433 1.401 3.944 TS-I 1.186 1.194 2.097 1.071 1.259 2.654 1.381 4.595 P-I 1.191 1.320 0.949 — — 3.013 — 4.492 TS-II 1.189 1.254 1.309 — — 1.323 — 4.348 Path B Reactant 1.194 1.187 4.094 1.078 1.258 2.460 1.401 2.575 TS-I 1.196 1.185 4.569 1.070 1.260 2.627 1.384 2.058 P-I 1.313 1.198 4.457 — — 2.276 — 0.954 TS-II 1.255 1.191 3.378 — — 1.329 — 1.309 P-II 1.193 1.191 2.448 — — 1.000 — 2.481	R=PhCH=CH								
Reactant1.1891.1922.7171.0791.2572.4331.4013.944TS-I1.1861.1942.0971.0711.2592.6541.3814.595P-I1.1911.3200.9493.013-4.492TS-II1.1891.2541.3091.323-4.348Path BReactant1.1941.1874.0941.0781.2582.4601.4012.575TS-I1.1961.1854.5691.0701.2602.6271.3842.058P-I1.3131.1984.4572.276-0.954TS-II1.2551.1913.3781.329-1.309P-II1.1931.1912.4481.000-2.481	Path A	1 100	1 102	0.717	1.070	1.057	0.422	1 401	2.044
1S-11.1861.1942.0971.0711.2592.6541.3814.595P-I1.1911.3200.949 $ 3.013$ $ 4.492$ TS-II1.1891.2541.309 $ 1.323$ $ 4.348$ Path BReactant1.1941.187 4.094 1.0781.258 2.460 1.401 2.575 TS-I1.1961.185 4.569 1.0701.260 2.627 1.384 2.058 P-I1.3131.198 4.457 $ 2.276$ $ 0.954$ TS-II1.2551.191 3.378 $ 1.329$ $ 1.309$ P-II1.1931.191 2.448 $ 1.000$ $ 2.481$	Reactant	1.189	1.192	2.717	1.079	1.257	2.433	1.401	3.944
P-1 1.191 1.320 0.949 3.013 4.492 TS-II 1.189 1.254 1.309 1.323 4.348 Path B	15-1	1.180	1.194	2.097	1.0/1	1.259	2.654	1.381	4.595
IS-II 1.189 1.254 1.309 - - 1.323 - 4.348 Path B Reactant 1.194 1.187 4.094 1.078 1.258 2.460 1.401 2.575 TS-I 1.196 1.185 4.569 1.070 1.260 2.627 1.384 2.058 P-I 1.313 1.198 4.457 - - 2.276 - 0.954 TS-II 1.255 1.191 3.378 - - 1.329 - 1.309 P-II 1.193 1.191 2.448 - - 1.000 - 2.481	P-I	1.191	1.320	0.949	—	_	3.013	_	4.492
Path B Reactant 1.194 1.187 4.094 1.078 1.258 2.460 1.401 2.575 TS-I 1.196 1.185 4.569 1.070 1.260 2.627 1.384 2.058 P-I 1.313 1.198 4.457 2.276 0.954 TS-II 1.255 1.191 3.378 1.329 1.309 P-II 1.193 1.191 2.448 1.000 2.481	15-11	1.189	1.254	1.309		_	1.323	_	4.348
Reactant 1.194 1.187 4.094 1.078 1.258 2.460 1.401 2.575 TS-I 1.196 1.185 4.569 1.070 1.260 2.627 1.384 2.058 P-I 1.313 1.198 4.457 2.276 0.954 TS-II 1.255 1.191 3.378 1.329 1.309 P-II 1.193 1.191 2.448 1.000 2.481	Path B								
TS-I 1.196 1.185 4.569 1.070 1.260 2.627 1.384 2.058 P-I 1.313 1.198 4.457 2.276 0.954 TS-II 1.255 1.191 3.378 1.329 1.309 P-II 1.193 1.191 2.448 1.000 2.481	Reactant	1.194	1.187	4.094	1.078	1.258	2.460	1.401	2.575
P-I 1.313 1.198 4.457 2.276 0.954 TS-II 1.255 1.191 3.378 1.329 1.309 P-II 1.193 1.191 2.448 1.000 2.481	TS-I	1.196	1.185	4.569	1.070	1.260	2.627	1.384	2.058
TS-II 1.255 1.191 3.378 1.329 1.309 P-II 1.193 1.191 2.448 1.000 2.481	P-I	1.313	1.198	4.457	_	_	2.276	_	0.954
P-II 1.193 1.191 2.448 — — 1.000 — 2.481	TS-II	1.255	1.191	3.378	_	_	1.329	_	1.309
	P-II	1.193	1.191	2.448	—	—	1.000	—	2.481

Table 4. Total energy, zero-point vibrational energy (ZPE) and thermal correction to enthalpy and entropy at HF/6-31G* for the two pathway	s of the four studied
reactions	

Species	Total energy (Hartree)	ZPE (kcal/mol)	Enthalpy (kcal/mol)	Entropy	
R=H					
Pathway A					
R	-750.818948	120.113	127.63	111.907	
TS-I	-750.816035	120.036	127.075	107.121	
P-I	-428.390523	50.859	54.482	77.457	
TS-II	-428.326590	47.769	51.182	76.326	
Pathway B					
R	-750.819075	120.124	127.677	112.895	
TS-I	-750.816123	120.011	127.06	107.211	
P-I	-428.398918	51.036	54.652	77.529	
TS-II	-428.327099	47.767	51.215	76.584	
P-II	-428.428879	51.339	54.934	77.531	
$R-CH_{\circ}$					
Pathway A					
R	-789 847659	138 917	146 924	114 956	
TS_I	-789 859391	138.634	146.654	114.164	
P-I	-467 432060	69 519	74 072	84 270	
TS-II	-467 370078	66 306	70.756	84 052	
Dothway P	107.570070	00.500	10.150	01.052	
Paulway D	790 947626	129 907	146 922	115 701	
K TC I	-789.847020	138.607	140.825	113.701	
15-1	- /89.83980/	138.007	140.044	114.384	
Г-I ТС П	-407.445558	66.262	74.203	04.304	
15-11 D II	-407.371790	60.303	70.777	83.087 84.785	
1 -11	-407.472900	09.945	74.518	84.785	
R=Phenyl					
Pathway A					
R	-980.323127	174.213	182.91	119.782	
TS-I	-980.366412	174.408	184.171	129.535	
P-I	-657.944562	105.496	111.736	100.159	
TS-II	-657.880994	102.288	108.418	108.443	
Pathway B					
R	-980.360354	174.604	184.363	130.6	
TS-I	-980.366976	174.413	184.187	129.724	
P-I	-657.950982	105.494	111.774	100.546	
TS-II	-657.879006	102.236	108.357	99.479	
P-II	-657.980931	105.843	112.109	100.544	
R-PhCH-CH					
Dethway A					
D D D	1057 258752	107 222	208 812	145 801	
TC I	1057 25448	197.233	208.812	141 529	
13-1 D I	-1057.23446	197.072	208.199	141.556	
г-1 те н	-/34.02095/	120.141	133./41	112.727	
13-11	-734.709220	124.955	132.410	112.019	
Pathway B	1055 050001	107 102	207 (22	126.564	
K	-1057.258991	197.102	207.682	136.564	
18-1	-1057.25538	197.093	208.241	142.02	
P-I	-/34.839/30	128.205	135.847	113.125	
15-11	-/34./6/9//	124.949	132.443	112.211	
P-11	-/34.86948/	128.550	136.184	113.414	

profile for the decomposition process of the two studied reactions is presented in Figure 1.

Examination of the free energy of the two suggested path-

ways of the four-substituted reactions studied shows that, for hydrogen, methyl, and phenyl substituted compounds pathway A. The difference between the activation energies of P-I in the two pathways is 44.18 kJ/mol.

3. Experimental

3.1. Synthesis

the final product can be formed from either of the two pathways, since there is no large differences between the transi-All melting points are uncorrected. IR spectra were recorded tion state one (TS-I) in the two pathways. Just in styryl, it in KBr disk using Perkin-Elmer system 2000 FTIR spectroappears clearly the formation for the final product (P-II) photometer. ¹H NMR spectra were recorded on a BRUKER is favored via pathway B than pathway A, since the six-DPX 400 MHz Superconducting NMR spectrometer. Mass membered cyclic transition state (TS-I) is of lower energy spectra were measured on Vg Auto-spes-q (high resolution, in pathway A than in pathway B. The calculated activation high performance, tri-sector GC/MS/MS) and with LCMS energies of TS-I are 18.40 and -0.25 kJ/mol for the reaction using Agilent 1100 series LC/MSD with an API-ES/APCI via pathway A and pathway B, respectively. Although ionization mode. Microanalyses were performed on LECO the formation of P-I is more favored for pathway B than CHNS-932 Elemental Analyzer.

3.1.1. 4-Benzylidineamino-1,2,4-triazine-3,5(*2H*,4*H*)-diones (2–5).

3.1.1.1. General procedure. A mixture of the appropriate 4-amino-1,2,4-triazine derivatives $(5 \text{ mmol})^9$ in acetic acid (10 mL) together with benzaldehyde (0.5 g, 5 mmol) and anhydrous sodium acetate (500 mg) was heated under reflux for 2 h. The solid that precipitated after cooling was collected and recrystallized from ethanol.

3.1.1.2. 4-Benzylidineamino-1,2,4-triazine-3,5(2*H***,4***H***)-dione (2).** Colorless crystals from ethanol, yield 800 mg (74%), mp 205–207 °C. LCMS m/z=217 (M+1). IR: 3221, 3111, 3052, 2941, 1714, 1665, 1612, 1570, 1401, 1341, 1230, 1097, 976, 833, 743. ¹H NMR (CDCl₃) δ 9.75 (br, 1H, NH), 8.68 (s, 1H), 7.92 (d, 2H, *J* 8), 7.60 (m, 1H), 7.54 (s, 1H), 7.48 (t, 2H, *J* 7.6). ¹³C NMR (DMSO) δ 172.6, 154.2, 148.1, 136.3, 134.1, 132.9, 130.2, 129.9. Anal. Calcd for C₁₀H₈N₄O₂ (216.2): C, 55.56; H, 3.73; N, 25.91. Found: C, 55.56; H, 3.67; N, 25.87.

3.1.1.3. 4-Benzylidineamino-6-methyl-1,2,4-triazine-3,5(2*H***,4***H***)-dione (3). Colorless crystals from ethanol, yield 900 mg (78%), mp 190–192 °C. LCMS** *m***/***z***=231 (M+1). IR: 3252, 3189, 2927, 1733, 1684, 1660, 1615, 1423, 1373, 1280, 1239, 795, 760, 690. ¹H NMR (CDCl₃) \delta 9.73 (br, 1H, NH), 8.66 (s, 1H), 7.91 (dd, 2H,** *J* **8, 1.4), 7.56 (m, 1H), 7.44 (m, 2H), 2.31 (s, 3H). ¹³C NMR (CDCl₃) \delta 169.9, 153.8, 148.1, 144.5, 133.4, 132.1, 129.7, 129.2, 17.3. Anal. Calcd for C₁₁H₁₀N₄O₂ (230.2): C, 57.39; H, 4.38; N, 24.34. Found: C, 57.35; H, 4.40; N, 24.38.**

3.1.1.4. 4-Benzylidineamino-6-phenyl-1,2,4-triazine-3,5(2*H***,4***H***)-dione (4). Colorless crystals from ethanol, yield 1.20 g (82%), mp 230–232 °C. LCMS** *m***/***z***=293 (M+1). IR: 3224, 3140, 3118, 3033, 2935, 1731, 1683, 1659, 1446, 1415, 1298, 1247, 1167, 768, 685. ¹H NMR (CDCl₃) \delta 9.77 (br, 1H, NH), 8.70 (s, 1H), 7.99 (dd, 2H,** *J* **8, 1.4), 7.94 (d, 2H,** *J* **8.0), 7.57 (m, 1H), 7.53–7.45 (m, 5H). ¹³C NMR (DMSO) \delta 173.0, 153.8, 148.0, 142.4, 134.1, 133.7, 133.0, 130.6, 130.2, 129.9, 129.2, 129.0. Anal. Calcd for C₁₆H₁₂N₄O₂ (292.3): C, 65.75; H, 4.14; N, 19.17. Found: C, 65.55; H, 3.96; N, 19.10.**

3.1.1.5. 4-Benzylidineamino-6-styryl-1,2,4-triazine-3,5(2*H***,4***H***)-dione (5).** Colorless crystals from ethanol, yield 1.30 g (82%), mp 260–262 °C. LCMS m/z=319 (M+1). IR: 3322, 3236, 3081, 2945, 1723, 1653, 1562, 1418, 1317, 1199, 972, 941, 741. ¹H NMR (DMSO- d_6) δ 12.90 (br, 1H, NH), 8.79 (s, 1H), 7.92 (d, 2H, *J* 7.6), 7.74 (d, 1H, *J* 16.4), 7.67–7.57 (m, 5H), 7.43–7.33 (m, 3H), 7.14 (d, 1H, *J* 16.4). ¹³C NMR (DMSO) δ 173.0, 153.9, 147.8, 140.9, 137.0, 135.0, 134.1, 133.0, 130.2, 130.0, 129.9, 129.1, 128.2, 121.0. Anal. Calcd for C₁₈H₁₄N₄O₂ (318.3): C, 67.92; H, 4.43; N, 17.60. Found: C, 67.88; H, 4.41; N, 17.58.

3.1.1.6. 6-Styryl-1,2,4-triazine-3,5(2*H***,4***H***)-dione (6). Prepared as reported,¹⁰ mp 268–270 °C (lit.⁹ 266 °C). ¹H NMR (DMSO-***d***₆) \delta 12.41 (br, 1H, NH), 12.09 (br, 1H, NH), 7.69 (d, 1H,** *J* **16.4), 7.60 (d, 2H,** *J* **7.4), 7.39 (t, 2H,** *J* **7.4), 7.33 (m, 1H), 7.05 (d, 1H,** *J* **16.4).**

3.1.1.7. 6-Styryl-2,3-dihydro-3-thioxo-1,2,4-triazine-5(4H)-one (7). Prepared as reported, ¹⁰ mp 278–280 °C

(lit.¹¹ 264 °C). ¹H NMR (DMSO- d_6) δ 12.63 (br, 1H, NH), 12.23 (br, 1H, NH), 7.79 (d, 1H, J 16.4), 7.64 (d, 2H, J 7.4), 7.42–7.33 (m, 3H), 7.07 (d, 1H, J 16.4).

3.1.1.8. 1,2,4-Triazine-3,5(*2H*,4*H*)-dione (10a). Mp 282–283 °C (lit.¹² 283 °C). ¹H NMR (DMSO- d_6) δ 12.32 (br, 1H, NH), 11.96 (br, 1H, NH), 7.38 (s, 1H).

3.1.1.9. 6-Methyl-1,2,4-triazine-3,5(*2H*,*4H*)-dione (**10b**). Mp 215–216 °C (lit.¹² 216 °C). ¹H NMR (DMSO-*d*₆) δ 11.99 (br, 1H, NH), 11.88 (br, 1H, NH), 2.50 (s, 3H, CH₃).

3.1.1.10. 6-Phenyl-1,2,4-triazine-3,5(*2H*,*4H*)-dione (**10c**). Mp 262–263 °C (lit.¹² 262 °C). ¹H NMR (DMSO- d_6) δ 12.52 (br, 1H, NH), 12.11 (br, 1H, NH), 7.82 (d, 2H, *J* 7.4, Ar–H), 7.43 (m, 3H, Ar–H).

3.2. Pyrolysis

3.2.1. Static pyrolysis. Each of the substrates 2–7 (200 mg) was introduced into the reaction tube $(1.5 \times 12 \text{ cm Pyrex})$, cooled in liquid nitrogen, sealed under vacuum (0.06 mbar) and then placed in the pyrolyzer for 15 min at a temperature deemed necessary for complete pyrolysis of the substrate. The pyrolyzate was then separated by preparative HPLC using ABZ⁺ column and an eluent of suitable composition (acetonitrile and water). The collected solutions of the pyrolyzate fractions were evaporated and each fraction was subjected to ¹H NMR, GC–MS, and LC–MS analyses (Table 1).

3.2.2. Flash vacuum pyrolysis (FVP). The apparatus used was similar to the one, which has been described in our recent publications.^{5,13} The sample was volatilized from a tube in a Büchi Kugelrohr oven through a 30×2.5 cm horizontal fused quartz tube. This was heated externally by a Carbolite Eurotherm tube furnace MTF-12/38A to a temperature of 600 °C, the temperature being monitored by a Pt/Pt-13%Rh thermocouple situated at the center of the furnace. The products were collected in a U-shaped trap cooled in liquid nitrogen. The whole system was maintained at a pressure of 10^{-2} Torr by an Edwards Model E2M5 highcapacity rotary oil pump, the pressure being measured by a Pirani gauge situated between the cold trap and the pump. Under these conditions the contact time in the hot zone was estimated to be $\cong 10$ ms. The different zones of the products collected in the U-shaped trap were analyzed by ¹H NMR, LC-MS, and GC-MS. Relative and percent yields were determined from ¹H NMR. Identities of compounds obtained were confirmed by comparison of their ¹H NMR with data of products separated from preparative HPLC (Table 1).

3.3. Kinetic runs and data analyses

A stock solution (7 mL) was prepared by dissolving 6–10 mg of the substrate in acetonitrile as solvent to give a concentration of 1000–2000 ppm. An internal standard was then added, the amount of which was adjusted to give the desired peak area ratio of substrate to standard (2.5:1). The solvent and the internal standard are selected because both are stable under the conditions of pyrolysis, and because they do not react with either substrate or product. The internal standard used in this study is chlorobenzene, 1,3-dichlorobenzene or 1,2,4-trichlorobenzene. Each solution was filtered to ensure

that a homogeneous solution is obtained. The weight ratio of the substrate with respect to the internal standard was calculated from the ratio of the substrate peak area to the peak area of the internal standard. The kinetic rate was obtained by tracing the rate of disappearance of the substrate with respect to the internal standard as follows: an aliquot part (0.2 mL) of each solution containing the substrate and the internal standard is pipetted into the reaction tube, which is then placed in the pyrolyzer for 6 min under non-thermal conditions. A sample is then analyzed using a Waters HPLC probe (pump model 515. UV detector model 2487), or a Metrohm HPLC (pump model 7091C, and SPD 10 AV Shimadzo UV detector) and UV detector at wavelength of 256 nm, and the standardization value (A_0) was then calculated. Several HPLC measurements were obtained with an accuracy of >2%. HPLC columns used for the analysis were Supelco (25 cm length, 4.6 mm ID) ABZ⁺, LC-8, and LC-18. The temperature of the pyrolysis (aluminum) block is then raised and held for ca. 900 s to allow approximately 10% pyrolysis to take place at this temperature. This procedure is repeated after each 10–15 °C rise in the temperature of the pyrolyzer until \geq 90% pyrolysis takes place. The relative ratios of the integration values of the sample and the internal standard (A) at the pyrolysis temperature are then calculated. A minimum of three kinetic runs were carried out at each reaction temperature, following every 10-15 °C rise in the temperature of the pyrolyzer, in order to ensure reproducible values of (A). Treatment of the kinetic data has been detailed elsewhere. 14-16

Acknowledgements

The support of the University of Kuwait received through research grant (SC02/03) and the facilities of Analab/SAF (GS02/01, GS03/01) is gratefully acknowledged.

References and notes

- Part 1: George, B. J.; Dib, H. H.; Abdallah, M. R.; Ibrahim, M. R.; Khalil, N. S.; Ibrahim, Y. A.; Al-Awadi, N. A. *Tetrahedron* **2006**, *62*, 1182–1192.
- Al-Etaibi, A.; Abdallah, M. R.; Al-Awadi, N.; Ibrahim, Y.; Hasan, M. J. Phys. Org. Chem. 2004, 17, 49–55.
- FT-NMR Aldrich Catalog 1(2); Milwaukee: Wisconsin, USA, 1509A.
- Al-Awadi, N. A.; Elnagdi, M. H.; Mathew, T. Int. J. Chem. Kinet. 1995, 27, 517–523.
- Al-Awadi, N.; Kaul, K.; El-Dusouqui, O. M. E. J. Phys. Org. Chem. 2000, 13, 499–504.
- 6. Titan; Wavefunction: Irvine, USA, 1999.
- 7. Spartan '04 for Windows; Wavefunction: USA, 2004.
- Scott, A.; Radom, L. J. Phys. Chem. 1996, 100, 16502– 16513.
- Ibrahim, Y. A.; Eid, M. A.; Badawy, M. A.; Abdel-Hady, S. A. J. Heterocycl. Chem. 1981, 18, 953–956.
- 10. Ibrahim, Y. A.; Eid, M. A. Indian J. Chem. 1975, 13, 1098-1100.
- 11. Semonsky, M., et al. Collect. Czech. Chem. Commun. 1967, 12, 4439–4451.
- 12. Lalezari, I. J. Org. Chem. 1968, 33, 4281-4283.
- Ibrahim, Y. A.; Al-Awadi, N. A.; Ibrahim, M. R. *Tetrahedron* 2004, 60, 9121–9130.
- 14. Sharp, J. T.; Gosney, I.; Rowley, A. G. *Practical Organic Chemistry*; Chapman & Hall: London, 1989; p 51.
- Al-Awadi, N. A.; Elnagdi, M. H.; Kaul, K.; Ilingovan, S.; El-Dusouqui, O. M. E. J. Phys. Org. Chem. 1999, 12, 654–656.
- Al-Awadi, N. A.; El-Dusouqui, O. M. E.; Kaul, K.; Dib, H. H. Int. J. Chem. Kinet. 2000, 32, 403–407.
- 17. Huang, X.; Xie, H.; Wu, H. J. Org. Chem. 1988, 53, 4862-4864.
- HSCN was detected by its MS correct parent ion peak (M⁺,59) in comparison with authentic sample prepared by treating KSCN and Dowex-50w.